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FRONTS OF STATIONARY NON-LINEAR WAVES IN MEDIA WITH A MEMORY 
AND FACTORIZATION THEOREMS* 

A.A. LCKSHIN 

Continuous and discontinuous one-dimensional waves of stationary profile 
are studied in non-linearly hereditary rods, where the heredity kernel 
is not assumed to be regular (i.e., the existence of a singularity is 
allowed for in the kernel, an integrable singularity as t-+0). Appropriate 
near-front asymptotic forms are found. As is well-known /l/, strong 
discontinuities cannot propagate in hereditary media with singular kernels 
in a linear situation. Consequently, the very possibility of the existence 
of solutions with strong discontinufties in the non-linear singular case 
is not totally trivial. 

A hypothesis is formulated onthepossibilityof soliton-like solutions being propagated 
for the case when the heredity kernel satisfies certain additional constraints. The in- 
vestigation of waves of stationary profile reduces to finding non-zero solutions of Volterra- 
type non-linear integral equations without right sides. Two new theoremsare presented on 
the factorization of non-linear wave operators with a memory and a kindred theorem on the 
asymptotic factorization of the Klein-Fock-Gordon equation. These theoremsenable the research 
results to be extended to a broad class of governing relations. 

This paper continues the investigations in /2-6/. The waves of stationary profile /3/ 
corresponded to the case of an exponential heredity kernel, which enabled the problem on 
determining the shape of such a wave to be reduced to the solution of an ordinary differential 
equation. A more general situation is examined in /6/ where a number of results on waves of 
stationary profile are given and partially proved for regular kernels. The factorization 
theorems presented below are based on the results in /7, 8/. 

1. Formulation of the problem. We consider a non-linear hereditary elastic rod of 
density ~=mnst in which the strain e and the stress (J are connected by the relationship 

where A>O,O<yei. It is assumed here that the function R(t) definedonthe half-axis t>O 

is non-negative, decreases , and its integral over the whole half-axis is finite. As has been 
shown in 12, 7/, the stress wave propagating to the right in such a rod is described by the 
following one-wave equation: 

(i - kyo) $a -f- (1 - ‘/,yRv) &a = 0; k = -B/A, + = #VAT W) 

(y is the Lagrangian coordinate of points of the rod). The condition on the discontinuity in 
t, t coordinates has the form UV= 1 -k71sa142[ol). Here U is the velocity of the front in the 
coordinates mentioned, and the square brackets denote taking the discontinuity at the front. 
To be specific, we assume ‘k>O below. In the case R-=0 this condition corresponds to 
reversal of the tension wave (moving to the right) during its motion. 

2. Continuous stationary waves. The question of whether waves exist in the one- 
dimensional medium under consideration , that propagate to the right intheunperturbed domain 
without changingshape is of interest. For waves that do not contain strong discontinuities 
the question formulated reduces to a question of whether solutions of the form o=f(i-&), 
c>O exist for (1.21, where f@)=o for z<O. As is well-known, perturbations ofinfinitesi- 
ma1 amplitude propagate over an unperturbed medium with an instantaneously elastic velocity 
(with unit velocity in t,z coordinates). Consequently, the required continuous solution of 
(1.2) should be sought in the form o=f(t -2). Substituting this expression into (1.2), 
integrating and redesignating the variable I= t--t by t, we arrive at the selfsimilar 
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integral equation 

(the constant of integration turns out to equal zero since j(t)= 0 for t <Q. It is clear 
that if there is at least one non-zero solution j(t) for Eq.(l.Z) , then an entire family of 
solutions of the form j(t-fO) will exist at once. A solution that does not vanish identically 

t 
kj2 (t) = s El (f - T) f(7) d?: 

” 

for arbitrarily small t>O can obviously always be selected from this family. 

Lemma. Let a bounded, monotonically increasing solution j(% t>o exist for (2.1) 
that is not identically zero in an arbitrarily small interval of the form O<t<& Then the 
function j(t)is continuous for t>O, is infinitely differentiable for r>O,j(O)=O and j(t)>0 
for t>O. Moreover 

Only inequalities (2.3) actually require proof. To set them up it 
estimate the right side in (2.1) from above and below, respectively, in . 

(2.3) 

is sufficient to 
terms of f (1) \ R (t)d: 

and R (t) 5 j (t) dt. The infinite differentiability of j(t) for t>O results from the positivity 
of f(t) for -t>O and the fact that the right-hand side in (2.1) has an order of smoothnesses 
exceeding the order of smoothness of the left side by one. !Phe latter is evidently possible 
only under the condition of infinite differentiability of both sides in (2.1). 

Theorem 1. The non-zero solution j(t) of (2.11, mentioned.in Lemma 1, exists. 
We prove this theorem in two steps. 
lo Let . 

R (t) = CP, 0 < t < to: to > 0, c > 0, 0 < a < i 

It is seen that the function 

(2.4) 

j (t) = cr (a) r (a + 1) (kT (Za + i))-V, 0 < t < 4 (2.5) 

is an exact solution of (2.1) with the kernel (2.4) in the half-interval KJ, 4) . We now 
construct the zeroth approximation to the solution in [o,m) as follows. We consider jo(t) 
to have the form (2.5) for 06 t<to while we set j0 (t)== Ilk for t>to. We determine the 
next approximations recursively from the formula 

t 
kfj*(t) = 5 Rfi - T)fj_l(T)d+ (2.6) 

0 

(here the positive value of the square root of the right side of (2.6) is taken in defining 
fj in terms of j&r ) . It can be proved by induction that jj(t)Gjo (t) in the half-interval 
LO, to) under the selection made for the zeroth approximation, jj (t) -+ Ilk as t-~0 and all 
functions jj(t) are non-negative and grow monotonically. Moreover, by subtracting (2.6) for 
j=n--l from an analogous equality for i= n and representing the left side that is obtained 
in the form of a product k&+f,_z)(fn -fnlI) it can be shown by induction that under the 
selection made for f. the inequalities O<jf,(t) <L1(f)< ..A& (t) willbevalfdfor t>O. Con- 
sequently, as j-co a non-zero limit exists for the functions j,(t) which we denote by f(t) 
and which is the desired solution. 

2O. Now let R(t) beanarbitrarynon-negative decreasing integrable function. We set 
R, (8) = R (l/n) for O<t<lln and R,,(t)= R(t) for t> l/n. It is clear that R,(t)< R,(t)< . ..d 

R, (t)Q . . . <RR(r), where all the R,,(t) are decreasing non-negative integrable functions, each 
of which will satisfy conditions (2.'4), respectively, with C=R(iln), a=% and k= I/n. Because 
of the preceding, (2.1) with kernel R,(t) has a monotonically increasing non-negative non- 
zero solution j(,,,(O for each n, for which the following limit relationship holds (see Lemma 
1) 

,(2.7) 

Horeoverr it can be proved by induction that O<j,,, (,)a . . -<f~,,~(t)~*-**But it follows 
from the monotonic growth of the function f(,,) and from (2.7) that‘all the f(,) have the constant 
i/k as upper bound. Therefore, as R-CO a limit exists for the sequence of function f,,, 

which is indeed the desired solution j(t). 
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Remark lo. An analogous theorem obviously also holds for the more general equation 
q(f)=R'f where cp is an arbitrary monotonicallyincreasingfunction of f having a zero of 
second order for i=O. 

2O. Let R(t)= Cc-' sin@+ spa) for r>,O, where C>O,a>O,o>O,O<cp,<n. Then (2.1) is 
reduced to the second-order differential equation 

(f*)" + 2~6 (f*Y - C, sin qO.f' - C, (0 cos cpo +- asin a)f i_ (~0 t_ 
0%) f2 = 0 

with initial conditions 

f (0) = 0, f' (0) = '/.$Y1 sin 90; C, = C/k 

In particular, (2.1) has the following solution for R(Z)= csinot: 

I@) = G (1 - co.3 (W/Z)); c, = ZC/(3~~) 

Hypothesis. If the non-negativity ofthekernel R(t) isdiscardedanditis assumed that 
its integral along the half-axis t>O is zero, then (2.1) will have a soliton-like solution. 

3. Discontinuous stationary waves. An equation analogous to (2.1) that describes 
discontinuous waves of stationary profile propagating in an unperturbed medium has the form 

I 

g(if(g(l)-~g(+O})=A,fR(E-~)g(T)dT; A, 1-kyg*(+(~)‘2 
“a 

(3.') 

It is here assumed that the small parameter Y is sufficiently small so that A,>o. The 
variable t in (3.1) is considered to be non-negative. Let us note the non-standard self- 
consistent nature of (3.1): the quantity g (+o), the '-'initial condition" for the function g(t), 
enters directly into (3.1). The stress wave 0 = g(t - z/f), c =~(i -W(+O)W' corresponds to 
the solutiong(t)of (3.1). Since li>O by assumption, it follows from the stability condition 
for a shock wave that there should be g(+O)>O. Later, for simplicity we shall write g(O) 
instead of g(i-0). 

Lemma 2. For a certain g(O)>O, let abounded monotonically increasing solution n(1), 
t>o exist for (3.1). Then 

g(t) -g(m) = g (0) -i--&I, f - 00 (3.2) 

where the function g(t)is continuous for t>o and infinitely differentiable for t>O. 

Proof. The relationship (3.2) follows at once from the finiteness of the integral of 
the kernel R(t) and from (3.1). Inequalities (3.3) can be obtained by estimating the right 
side in (3.1) from above and below, respectively, in terms of -4, g (t) ! R (t) dt and A,g (0) 5 R ft) dt 
(integration is between 0 and tf. 

Theorem 2. For each value g(O)> 0 a bounded monotonically increasing solution 8 (t), t>O 

exists for (3.1). 
The proof of this theorem (like theproof of Theorem 1) is performed in two steps. 
lo. As the zeroth approximation to the solution we take an arbitzrary continuous mono- 

tonically increasing function g,,(t) such that go(o) = g(t)) and go(m)= g(O)+~/k. We then 
determine the successive approximations by means of the formula 

t 
g,, (t) (g, (I) - g (0)) = AC,! R (t - 7) g,_, CT) dr: t > 0 (3.4) 

0 

(here the larger of the two roots of the quadratic equation is selected to define gR in terms 
of &-l ). The convergence of the approximations constructed in the small segment Ogtas to 
a certain montonically increasing function 'p(+can be proved. For this it is sufficient to 
setup the inequality maxIg,-gg,-,iBxmRxIcr,-,-qp,,I, O<x<l;m=l,2,... for O<t<S6. But 
this inequality can be proved by subtracting (3.4) for n= m--l from (3.4) for fi=m aa 
taking the upper limit of the integral component. 

2O. We will now establish the existence of a solution on the whole semi-axis. We use 
the successive approximation scheme (3.4) again, however we take the function g0 (t) = cp(t) for 
O<rgfi and go(t)= g(O)+ f/k for t>6 as the seroth approximation this time. Convergence 
of the successive approximations determined by such a method on the whole semi-axis t,,0 
follows from the fact that all the functions g,,(t)increa&e monotonically, have a common constant 
constant as upper bound, satisfy the inequalities 0 < Bn (0 < #n-1 (0 < . . . 4 g, (t) proved by in- 
duction, and g,(t)=o(t) holds in the segment o<t<6'for all n. The limit function g(t) is 
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indeed the desired solution of (3.4). The theorem is proved. 

4. Stabilizing waves. It is clear from (3.1) and (3.2) that g(m)>/(m) = Ilk. Con- 
sequently, the following qualitative deductions can be made about the behaviour of the 
solutions of (1.2) at large times for initial and boundary conditions given below (0 is the 
Heaviside function) 

5 == 0, 0 = 0,8 (t) (au > 0); t < 0, z > 0, ,J (& 7.) c 0 (4.1) 

lo If . o,> Ilk, then as t-m the solution of problem (1.2), (1.4) tends to a discon- 
tinuous wave of stationary profile propagating over an unperturbed medium: 0 = g(t-z/c+const). 
The front velocity c and the magnitude of the discontinuity on the frontg(0) are determined 
here from the equalities i!c L 1 - kyz (0112 and cr, = g (m) s Ilk -1-g (0) (1 - ?'I@. Therefore, the non- 
linear effect of overturning turns out to be stronger here than the smoothing because of 
relaxation. 

20 . If a,= Ilk, then as t-m the solution of problem (1.2), (1.4) tends to a continuous 
stationary wave of the form o=f(t-z+cconst). It can be said that the non-linear and relaxation 
effects are mutually equilibrated in this case. 

30 . If 0 <a, <Ilk, as follows from the results obtained above, no solution exists for 
any of the selfsimilar Eqs.(2.1) and (3.11, that tends to e0 at infinity. It can be shown, 
however, that even in this case the wave profile is stabilized, but the wave profile being 
propagated over a perturbed medium turns out to be the limit. 

5. Factorization theorems.. Underlying the theory was the one-wave Eq.(Z.l) con- 
taining a quadratic non-linearity. This equation was obtained in /2, 7/ as the asymptotic 
form as y-0. It follows from the theorems presented below that a) a governing relationship 
exists for which (2.1) is not asymptotic but exact; b) Eq.(2.1) allows of natural extension 
to the case of a non-linearity of general form. It can be shown that all the results of 
Sects.2-4 are carried over to the case of a non-linearity of general form. 

Theorem 3. Let the gwerning relationship 

F (i) = 

hold. 
Then the dynamic equation for the stress 

at2 s (l+H‘)I/~(l+R")I/a'oot'dt-$a,PO=O -m 

is factorized exactly as follows 

(5.1) 

(the upper or lower signs are selected simultaneously). The one-wave equations corresponding 

to the factorization (5.1) have the form 

II +R’)I/a’da,o*-?,a 
ti/p B 

o=o 

Another approach to this problem is described in /5/. 
The governing relationship used in Theorem 3 is constructed in a rather complicated 

matter. Still another simpler governing relationship of hereditary type (also containing 
a non-linearity of general'form) can be proposed for which factorization of the appropriate 
wave operator also turns out to be possible. However, unlike (5.1) this factorization will 
not be exact but asymptotic with a uniformly small residual. 

Theorem 4. Let the following relationship hold 

E(t) = Q (e(t)) + y 5 d(a (r)) dr, O<Y<l 
-m 

Then the appropriate dynamic equation forthe stress 
a+ (0) + yatb (0) - p-lay2 0 = 0 

can be factorized asymptotically in the following manner: 



a, I/~~ + + 13’ (a) T-&- au, 11 
(3 (u) s (a’ (a))-‘/‘5 (12 (q))-“’ b' (q) dq 

0 
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(5.2) 

where the quantity d(v*) is uniformly small for a bounded Q and vanishes for a = 0. The one- 
wave equations corresponding to the factorization (5.2) have the form 

For completeness, we present one more factorization theorem similar to Theorems 3 and 4. 

Theorem 5. the Klein-Fock-Gordon equation 

a+ - a+ + yg cw) = 0, 0 < 7 4 I 

cam be factorized asymptotiaally as follows 

(a, + %~l'g' (w) T avl {aft0 + V,cg b) f auu;) = 0 (p) (5.3) 

Here l-is the integration operator with respect to dl from--m to t, while the quantity 
O(sz) is uniformly small for bounded IU and vanishes for ILL= 0. The one-wave equations 
corresponding to the factorization (5.3) have the form 

ap++ s g (w 6)) do * a,,w = 0 

The proof of Theorems 3-5 reduce to multiplication of the operator brackets in (5.1)- 
(5.3). It is here necessary to take account of the order of the factor-operators (the 
operator on the right acts earlier). 

The author is grateful to N.V. Evolinskii for discussing the results. 
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